

C3535X-INx9 Series High Power Infrared LED

Introduction

The C3535X-INx9 series LED from TSLC brings industry leading technology to the infrared applications market with its high reliability and performance. With an Al2O3 ceramic substrate and a 140/90/60 degree view angle primary lens, the C3535X-INx9 series LED is a perfect solution for security cameras, surveillance systems, machine vision and general purpose IR applications.

Table of Contents

Characteristics	1
Mechanical Dimensions	5
Recommended Solder Pad Design	6
Relative Spectral Power Distribution	7
Typical Spatial Radiation Pattern	7
Typical Forward L-I Characteristics	8
Typical Forward I-V Characteristics	8
Recommended Soldering Profile	9
Thermal Design	10
Packing information	11

RoHS Compliant

Characteristics

Absolute Maximum Ratings (Tj = 25°C)

Dovototov	Rating		
Parameter	IR Series		
DC Forward Current (mA)	600 mA (C3535X-INx9 A series)		
DC Forward Current (mA)	1000 mA (C3535X-INx9 B series)		
LED Junction Temperature	115°C		
LED Operating Temperature	-40°C ~85°C		
Storage Temperature	-40°C ~115°C		
Soldering Temperature	Max. 260 $^\circ\!\mathrm{C}$ / Max. 10sec. (JEDEC 020)		
ESD Sensitivity	2,000 V HBM (JESD-22A-114-B)		
Reverse Voltage	Not designed to be driven in reverse bias (VR \leq 5V)		
Preconditioning	Acc. to JEDEC Level 1		

Product Name

<u>C 3535 X</u> – <u>IN x 9</u>

1 2~5 6 7~8 9 10

Code 1: Substrate composition, C: Ceramic Al2O3 Code 2.3.4.5: Package size, 3535: 3.5*3.5mm Code 6: X: Product Class, IR (>700nm) Code 7.8: Wavelength Class, IN: IR (840~870nm) Code 9: Lens type, L: 140 degree, A: 90 degree, F: 60 degree Code 10: Lens version

Part Number	Peak Wavelength Wp Min Max		2θ _{1/2}	Temperature Coefficient of Vf (mV/°C)	Thermal Resistance Junction to Pad (°C/W)
				ΔVF /ΔΤJ	RΘ _{J-L}
C3535X-INL9			120	-2~-4	11.5
C3535X-INA9	840	870	80	-2~-4	11.5
C3535X-INF9			45	-2~-4	11.5

General Characteristics (C3535X-INx9 A series) at 350mA

Notes:

- 1. The peak wavelength is measured with an accuracy of ± 1 nm
- 2. All values stated are subject to the limits and set up of TSLC's testers. All other measurement data are defined as long-term production mean values and are only given for reference.
- 3. A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. Life support devices or systems are intended (i) to be implanted in the human body, or (ii) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Components used as a critical component must be approved in writing by TSLC Corporation.

General Characteristics (C3535X-INx9 B series) at 700mA

Part Number	Peak Wave	eak Wavelength Wp		Temperature Coefficient of Vf (mV/℃)	Thermal Resistance Junction to Pad (°C/W)
	Min Max			ΔVF /ΔΤJ	RØ _{J-L}
C3535X-INL9			135~140	-2~-4	11
C3535X-INA9	840	870	90	-2~-4	11
C3535X-INF9			60	-2~-4	11

- 1. The peak wavelength is measured with an accuracy of ±1nm
- 2. All values stated are subject to the limits and set up of TSLC's testers. All other measurement data are defined as long-term production mean values and are only given for reference.
- 3. A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system. Life support devices or systems are intended (i) to be implanted in the human body, or (ii) to support and/or maintain and sustain human life. If they fail, it is reasonable to assume that the health of the user may be endangered. Components used as a critical component must be approved in writing by TSLC Corporation.

	Perfor	mance at	Performance at 600mA			
Part Number	Group	Radiometric Power (mW)		Vf		* Calculated Minimum Radiometric Power
		Min	Max	Min	Max	mW
	NC5	180	200	1.4	2.1	310
	ND1	200	240	1.4	2.1	360
C3535X-INL9 series	ND2	240	280	1.4	2.1	425
C3333X-INL9 Series	ND3	280	320	1.4	2.1	490
	ND4	320	360	1.4	2.1	555
	ND5	360	400	1.4	2.1	620
	NC4	160	180	1.4	2.1	275
	NC5	180	200	1.4	2.1	310
C3535X-INA9 series	ND1	200	240	1.4	2.1	360
C3333X-IIIA3 Series	ND2	240	280	1.4	2.1	425
	ND3	280	320	1.4	2.1	490
	ND4	320	360	1.4	2.1	555
	NC3	140	160	1.4	2.1	245
	NC4	160	180	1.4	2.1	275
C3535X-INF9 series	NC5	180	200	1.4	2.1	310
C2222V-IIVI 2 261162	ND1	200	240	1.4	2.1	360
	ND2	240	280	1.4	2.1	425
	ND3	280	320	1.4	2.1	490

Radiometric Power and Forward Voltage (Tj = 25°C) (C3535X-INx9 A series) at 350mA

Note: 1. Radiometric power is measured with an accuracy of ±10%

2. The forward voltage is measured with an accuracy of $\pm 0.2V$

* Calculated values are for reference only.

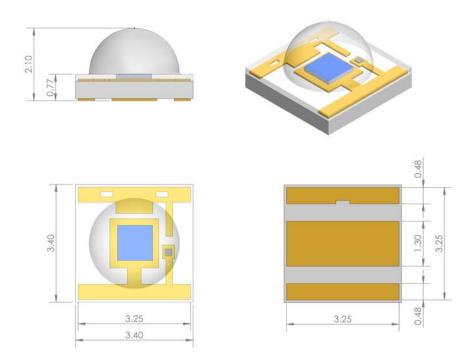
Radiometric Power and Forward Voltage (Tj = 25°C) (C3535X-INx9 B series) at 700mA

	Perfor	mance at Test Current (700mA)				Performance at 1000mA
Part Number	Group	Radiometric Froup Power (mW)		/f	* Calculated Minimum Radiometric Power	
		Min	Max	Min	Max	mW
	NE3	480	520	1.4	2.1	700
C3535X-INL9 series	NE4	520	560	1.4	2.1	756
	NE5	560	600	1.4	2.1	812

	NF1	600	650	1.4	2.1	868
	NF2	650	700	1.4	2.1	924
	NF3	700	750	1.4	2.1	980
	NF4	750	800	1.4	2.1	1036
	NE2	440	480	1.4	2.1	644
	NE3	480	520	1.4	2.1	700
	NE4	520	560	1.4	2.1	756
C2E2EV INIAO corios	NE5	560	600	1.4	2.1	812
C3535X-INA9 series	NF1	600	650	1.4	2.1	868
	NF2	650	700	1.4	2.1	924
	NF3	700	750	1.4.	2.1	980
	NF4	750	800	1.4	2.1	1036
	NE1	400	440	1.4	2.1	588
	NE2	440	480	1.4	2.1	644
	NE3	480	520	1.4	2.1	700
	NE4	520	560	1.4	2.1	756
C3535X-INF9 series	NE5	560	600	1.4	2.1	812
	NF1	600	650	1.4	2.1	868
	NF2	650	700	1.4	2.1	924
	NF3	700	750	1.4	2.1	980

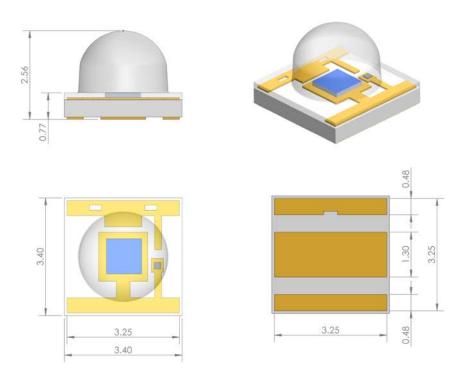
Note: 1. Radiometric power is measured with an accuracy of ±10%

2. The forward voltage is measured with an accuracy of $\pm 0.2 \text{V}$


* Calculated values are for reference only.

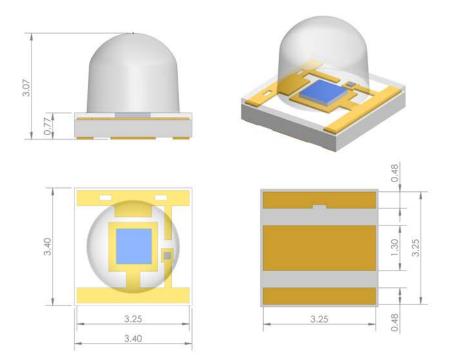
Mechanical Dimensions

C3535X-INL9 series



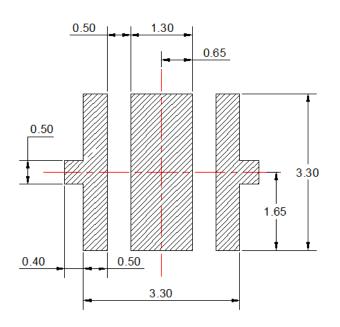
- 1. Drawing is not to scale
- 2. All dimensions are in millimeter
- 3. Dimensions are ±0.13mm unless otherwise indicated

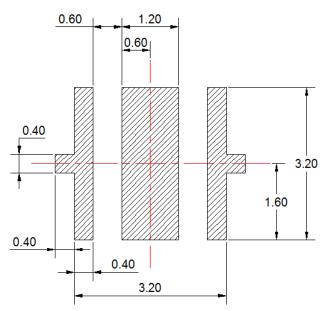
C3535X-INA9 series



- 1. Drawing is not to scale
- 2. All dimensions are in millimeter
- 3. Dimensions are ±0.13mm unless otherwise indicated

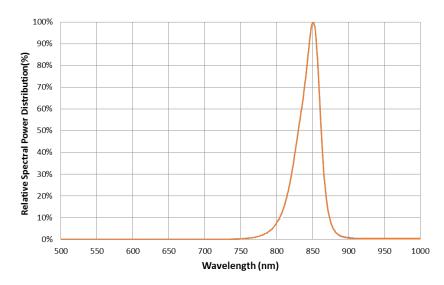
C3535X-INF9 series


- 1. Drawing is not to scale
- 2. All dimensions are in millimeter
- 3. Dimensions are ±0.13mm unless otherwise indicated

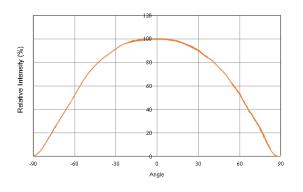


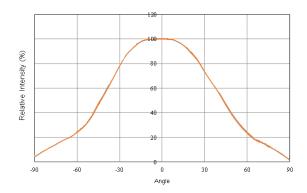
Recommended Solder Pad Design

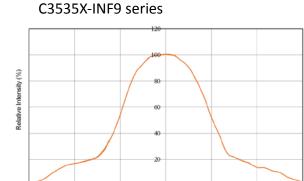
Recommended Soldering Pad Design


Recommended Stencil Pattern Design (Marked Area is Opening)

- 1. Drawing is not to scale
- 2. All dimensions are in millimetre




Relative Spectral Power Distribution, Tj=25 $\,^{\circ}C$


Typical Spatial Radiation Pattern, Tj=25 $\,^\circ \! \mathbb{C}$

C3535X-INL9 series

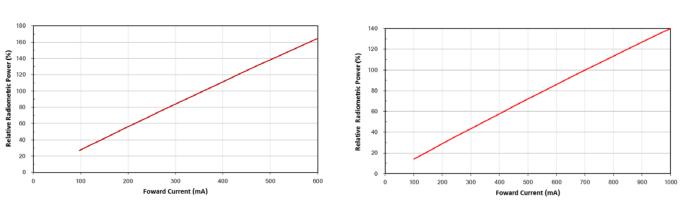
C3535X-INA9 series

0

Angle

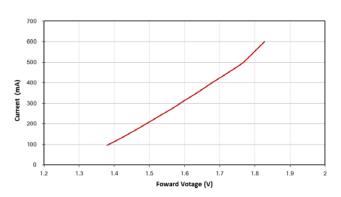
30

60

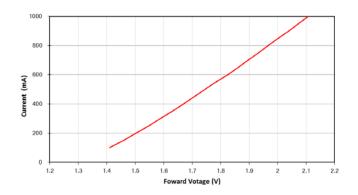

-60

-30

Typical Forward L-I Characteristics, Tj=25 $^{\circ}C$



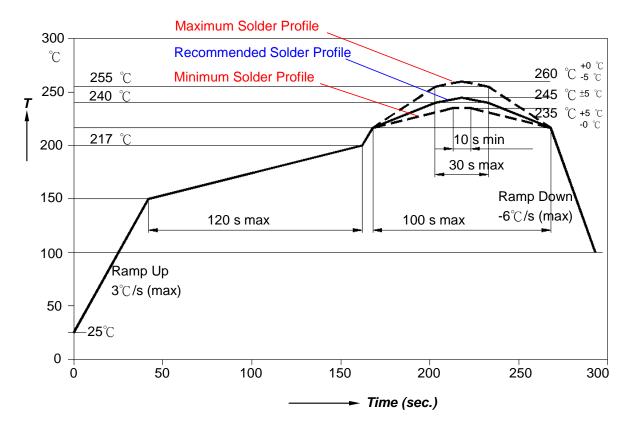
C3535X-INx9 A series


C3535X-INx9 B series

Typical Forward I-V Characteristics, Tj=25 $^\circ C$

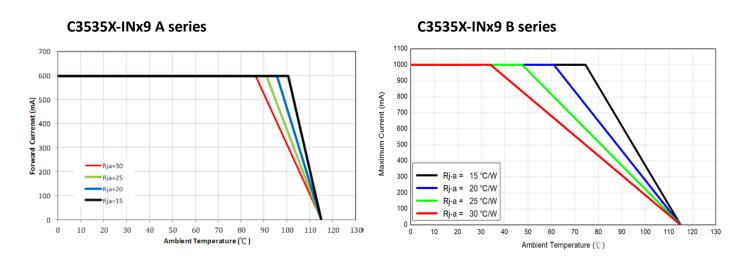
C3535X-INx9 A series

C3535X-INx9 B series



Recommended Soldering Profile

The LEDs can be soldered using the parameters listed below. As a general guideline, the users are suggested to follow the recommended soldering profile provided by the manufacturer of the solder paste. Although the recommended soldering conditions are specified in the list, reflow soldering at the lowest possible temperature is advised for the LEDs.


Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-up Rate (Ts _{max} to Tp)	3°C∕second max.	3℃/second max.
Preheat		
- Temperature Min(Ts _{min})	100 °C	150 °C
- Temperature Max(Ts _{max})	150 °C	200 °C
- Time(ts _{min} to ts _{max})	60-120 seconds	60-180 seconds
Time maintained above:		
 Temperature(T_L) 	183°C	217 °C
- Time(t _L)	60-150 seconds	60-150 seconds
Peak/classification	215 °C	260°C
Temperature(Tp)		
Time within 5° C of actual Peak	10.20 accords	20.40 accorda
Temperature(tp)	10-30 seconds	20-40 seconds
Ramp-Down Rate	6°C∕second max.	6°C/second max.
Time 25 $^{\circ}$ C to Peak Temperature	6 minutes max.	8 minutes max.

11

Thermal Design

Thermal design of the end product is important. The thermal resistance between the junction and the solder point $(R\Theta_{J-P})$ and the end product should be designed to minimize the thermal resistance from the solder point to ambient in order to optimize the emitter life and optical characteristics. The maximum operation current is determined by the plot of Allowable Forward Current vs. Ambient Temperature.

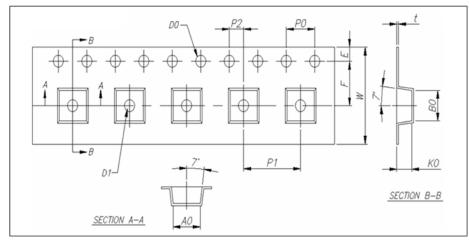
The junction temperature can be correlated to the thermal resistance between the junction and ambient (Rja) by the following equation.

Tj=Ta + Rja*W

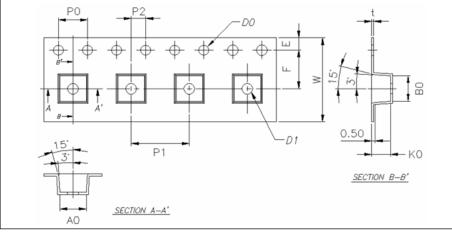
Tj: LED junction temperature

Ta: Ambient temperature

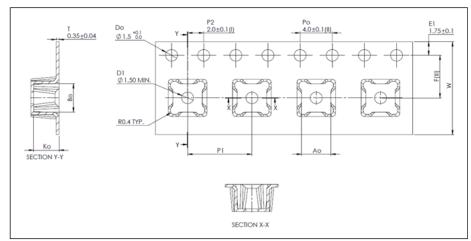
Rja: Thermal resistance between the junction and ambient


W: Input power (I_F*V_F)

Packing Information


C3535X-INL9 series, Max QTY: 1000ea / roll

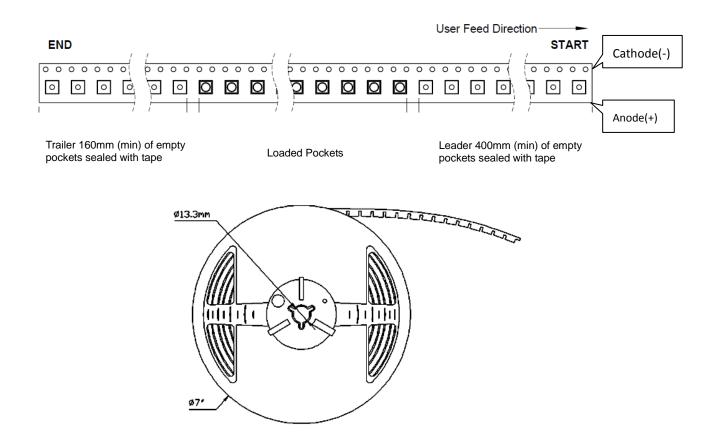
Item	Specification	Tol.(+/-)
W	12.00	±0.20
E	1.75	±0.10
F	5.50	±0.05
D0	1.50	+0.10, -0
D1	1.50	±0.10
P0	4.00	±0.10
P1	8.00	±0.10
P2	2.00	±0.10
P0X10	40.00	±0.20


lt	tem	Specification	Tol.(+/-)
	t	0.25	±0.05
	A0	3.80	±0.10
	B0	3.80	±0.10
	K0	2.20	±0.10

C3535X-INA9 series, Max QTY: 500ea / roll

Item	Specification	Tol.(+/-)
W	12.00	±0.30
E	1.75	±0.10
F	5.50	±0.05
D0	1.50	+0.10, -0
D1	1.50	+0.10, -0
P0	4.00	±0.10
P1	8.00	±0.10
P2	2.00	±0.05
P0X10	40.00	±0.20
Item	Specification	Tol.(+/-)
t	0.30	±0.05
A0	3.65	±0.10
B0	3.65	±0.10
K0	2.56	±0.10

C3535X-INF9 series, Max QTY: 500ea / roll



ltem	Specification	Tol.(+/-)
A0	3.65	±0.10
B0	3.65	±0.10
K0	3.15	±0.10
F	5.50	±0.10
P1	8.00	±0.10
W	12.00	±0.30

Page

13

Note:

All dimensions are in millimeter.

About Us

TSLC Corporation is devoted to developing high-density and multi-size emitters with powerful output to satisfy the needs of every customer.

TSLC Corporation is the leader in LED solutions. Unlimited design flexibility for interior and exterior spaces with high-end lighting effect; energy-efficient for UV curing to improve the quality of medical care; horticulture solutions create a better environment for everyone; high-intensity rotatable lightings for the entertainment industry, TSLC is always there for your lighting needs.

For further company or product information, please visit us at www.tslc.com.tw or please contact sales@ tslc.com.tw.

www.tslc.com.tw

ASIA PACIFIC 1F, No. 11, Ke Jung Rd. Chu-Nan Site Hsinchu Science Park Chu-Nan 350, Miao-Li City Taiwan, ROC

> Tel: +886-37-587098 Fax: +886-37-587099 sales@tslc.com.tw

